Archive for November, 2008

A Younger Version of Our Solar System

By Bellatrix

New information about a neighboring star has shed some light on our theories of solar system formation and given hope to terrestrial planet hunters. The near by star Epsilon Eridani has features very similar to our own solar system, it is however much younger than our own system, perhaps giving us a glimpse to how our solar system might have looked in its very early stages.

The star itself is about 10.5 light years away. It is the third brightest star seen with the naked eye. The star is a K2 spectral type star; it is slightly smaller and less massive than the sun. It is thought to be less than a billion years old, where our sun is close to 5 billion years old. Because of it’s young age it has a much higher level of magnetic activity than the sun and a stellar wind about 30 times as strong.

Recently, using the Spitzer Space Telescope, astronomers have identified two areas of rocky rings, or asteroid belts, just like our solar system. It has an inner asteroid belt at an equivalent distance from its star as our asteroid belt to the sun. An outer asteroid belt is also present at about the position where our Uranus is. This outer belt contains about 20 times more material than the inner belt. A third ring of icy materials is set out about 35 to 100 AU from the star, very similar to our Kuiper Belt but with about 100 times more material. This extra material makes sense, given the systems age. Our solar system is much older and thus has had more time for collisions to take place and either destroy material or send it out of orbit.

Spitzer also noticed large gaps in these rings. The most logical explanation for these gaps is the presence of planets. Astronomers predict at least three planets with masses between that of Neptune and Jupiter, and another possible smaller planet may lie near the innermost ring. These gaps and the closeness of this star, plus evidence from other planet hunting techniques such as observing radial velocities, makes this star high on the list of planet hunters trying to find earth like planets, and even possibly life. With all the similarities noticed thus far between the two systems, one might think it surprising not to find smaller rocky planets in the inner part of the system.

Studying this system is exciting ad enlightening for astronomers. Seeing that our solar system is not totally unique means that our theories about how solar systems for may not be completely off base. Also, studying this solar system more intensely may show us things about our early solar system we wouldn’t have otherwise known. As the resolving power of our telescopes improve new discoveries from this system should be something to watch out for.

Votes from Space!

By Reynolds William

And to think some people can’t be bothered because “There wasn’t any parking at my polling place…” Actual quote.  Sigh…. Let me see if I got this straight, astronauts circling in orbit can cast their votes in the general election, but 1 parking spot too few is enough to delay your civic duty 4 more years?

I’m not trying to spin up some indignant rhetoric around patriotic duty and whatnot, but considering how many people have given their lives to obtain and protect the freedoms we enjoy – not the least of these being the right and privilege to determine our leadership through general elections – it seems a tad remiss to take a pass on casting a ballot because of a lack of convenience.

http://www.nasa.gov/mission_pages/station/expeditions/expedition18/vote_110408.html

Null Physics Intro

By Terence Witt

A look at the questions addressed by Null Physics pertaining to the universe and our existence presented through sight and sound.

[flashvideo filename=”http://www.nullphysics.com/downloads/nfcosmology2.flv” /]

If you cannot view the above video, please use this link .

Where’s That Antimatter Coming From?

By Bellatrix

One great mystery about our galaxy right now has to do with a cloud of antimatter near the center of the galaxy. No one knows exactly how or why this antimatter is being generated. However, data being looked at from the last four years, from the European Space Agency, may have had a bit of a break through.

Antimatter is the antiparticles to matter; where normal matter is made up of particles, antimatter is made of antiparticles. Each antiparticle has the same mass as its matter counterpart but is opposite in electric charge and magnetic properties, for example the antimatter partner to an electron is a positron. When matter and antimatter collide they annihilate releasing a large amount of energy.

This cloud of antimatter was discovered in the 1970’s. It is about 10,000 light years across and generates the energy of 10,000 suns. The cloud shines brightly with gamma rays; this is because of the antimatter colliding and annihilating with normal matter. Their interaction releases high-energy gamma rays, which allows for us to detect the antimatter’s presence. For years scientists have theorized the antimatter coming from radioactive elements produced in supernovae, or that the positrons are coming colliding stellar winds or other types of novae. But there was in evidence to really support any of these theories.

Now with data from the International Gamma-Ray Astrophysics Laboratory, or INTEGRAL, astronomers have noticed something new. The cloud extends further on the western side of the galactic center than on the eastern side. This location matches of very well with the distribution of a population of hard low-mass x-ray binary star systems. These star systems consist of a low mass star orbiting with either a neutron star or a black hole. X-rays are given off when gas from the low mass stars falls in on the neutron star or black hole. Because the positions of the binaries and antimatter line up so well astronomers believe that the binary systems are producing half or all of positrons seen in the cloud.

We now may have a good idea of where the antimatters coming from, however we still have no idea how/why exactly the binary systems are producing these positrons. Astronomers believe it has something to do with the jets of relativistic material and areas of strong magnetic fields that can be common with these types of systems. With the GLAST space telescope having been launched and starting to collect data, we could potentially gain a lot more insight into what exactly is going on very soon.